$C^*$-isomorphisms, Jordan isomorphisms, and numerical range preserving maps

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C∗-Isomorphisms, Jordan Isomorphisms, and Numerical Range Preserving Maps

Let V = B(H) or S(H), where B(H) is the algebra of bounded linear operator acting on the Hilbert space H, and S(H) is the set of self-adjoint operators in B(H). Denote the numerical range of A ∈ B(H) by W (A) = {(Ax, x) : x ∈ H, (x, x) = 1}. It is shown that a surjective map φ : V→ V satisfies W (AB +BA) =W (φ(A)φ(B) + φ(B)φ(A)) for all A,B ∈ V if and only if there is a unitary operator U ∈ B(H...

متن کامل

Isomorphisms Preserving Invariants

Let V and W be finite dimensional real vector spaces and let G ⊂ GL(V ) and H ⊂ GL(W ) be finite subgroups. Assume for simplicity that the actions contain no reflections. Let Y and Z denote the real algebraic varieties corresponding to R[V ] and R[W ] , respectively. If V and W are quasi-isomorphic, i.e., if there is a linear isomorphism L : V → W such that L sends G-orbits to H-orbits and L se...

متن کامل

Isomorphisms in unital $C^*$-algebras

It is shown that every  almost linear bijection $h : Arightarrow B$ of a unital $C^*$-algebra $A$ onto a unital$C^*$-algebra $B$ is a $C^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for allunitaries  $u in A$, all $y in A$, and all $nin mathbb Z$, andthat almost linear continuous bijection $h : A rightarrow B$ of aunital $C^*$-algebra $A$ of real rank zero onto a unital$C^*$-algebra...

متن کامل

On strongly Jordan zero-product preserving maps

In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of  Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...

متن کامل

Lattice Isomorphisms and Iterates of Nonexpansive Maps

It is easy to see that the I, norm and the sup norm 11. Ilm (Ilxll, = max{Ix, I: 1 I i 5 n)) on I?’ are polyhedral. If E is a finite dimensional Banach space with a polyhedral norm 11. )I, D is a compact subset of E and f: D + D is a nonexpansive map, Weller [2] has shown that for each x E D, there again exists an integer px such that (1.1) holds. The original arguments did not give upper bound...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2007

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-07-08807-7